
Package: resevol (via r-universe)
September 10, 2024

Type Package
Title Simulate Agricultural Production and Evolution of Pesticide

Resistance
Version 0.3.4.0
Imports stats(>= 4.0.0), utils (>= 4.0.0)
Maintainer A. Bradley Duthie <brad.duthie@gmail.com>

Description Simulates individual-based models of agricultural pest
management and the evolution of pesticide resistance.
Management occurs on a spatially explicit landscape that is
divided into an arbitrary number of farms that can grow one of
up to 10 crops and apply one of up to 10 pesticides. Pest
genomes are modelled in a way that allows for any number of
pest traits with an arbitrary covariance structure that is
constructed using an evolutionary algorithm in the
mine_gmatrix() function. Simulations are then run using the
run_farm_sim() function. This package thereby allows for highly
mechanistic social-ecological models of the evolution of
pesticide resistance under different types of crop rotation and
pesticide application regimes.

URL https://bradduthie.github.io/resevol/

BugReports https://github.com/bradduthie/resevol/issues

Depends R (>= 4.0.0)
License GPL (>=2)
LazyData TRUE
Encoding UTF-8
VignetteBuilder knitr
Suggests knitr, rmarkdown, testthat, markdown
RoxygenNote 7.2.3
Repository https://bradduthie.r-universe.dev
RemoteUrl https://github.com/bradduthie/resevol
RemoteRef HEAD
RemoteSha e5c10e2d44c83c915c617d9a2c1391fb1f9b4b5c

1

https://bradduthie.github.io/resevol/
https://github.com/bradduthie/resevol/issues


2 mine_gmatrix

Contents
mine_gmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
run_farm_sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
stress_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Index 14

mine_gmatrix Mine G-matrices

Description

Mine networks for establishing the link between genome and g-matrix. The output from this func-
tion is required to run individual-based simulations in the rest of the package. The key input to
this function, ’gmatrix’, is a (square) covariance matrix, with each row and column representing
a trait for the individual-based model. This function will run an evolutionary algorithm to try to
find a network that produces traits with the covariance structure of gmatrix from a set of random
standard normal values. The network from loci values to trait values goes through a number of
linked nodes to achieve this, and each generation tests the stress of the resulting network in terms
of expected squared deviation of trait covariances from the input gmatrix. Simulations can take
minutes to hours or longer, depending on parameters chosen and the number of traits. See vignettes
for a more comprehensive explanation for what this function is doing.

Usage

mine_gmatrix(
loci = 18,
layers = 6,
indivs = 1000,
npsize = 2000,
mu_pr = 0.05,
mu_sd = 0.01,
max_gen = 1000,
pr_cross = 0.05,
sampleK = 40,
chooseK = 4,
term_cri = -5.3,
sd_ini = 0.1,
use_cor = FALSE,
prnt_out = TRUE,
gmatrix

)

Arguments

loci The number of loci for an individual. Simulations can allow for both haploid
and diploid individuals. Allele values at each loci affect trait values through a
network of intermediary nodes.



mine_gmatrix 3

layers The number of hidden layers in the network linking loci to traits.

indivs The number of individuals initialised in each generation of the evolutionary al-
gorithm to test among-individual trait correlations. Individuals are initialised
with allele values drawn from a standard normal distribution.

npsize The size of the population of networks in each generation of the evolutionary
algorithm. Each network is a discrete individual in the population.

mu_pr The probability that a value in the network will mutate in a generation. Mutation
events change the existing value by adding a new value drawn from a normal
distribution with a mean of 0 and standard deviation of mu_sd.

mu_sd The standard deviation of the random normal value mean centered at 0 that is
added to the existing value of the network when a mutation event occurs.

max_gen The maximum number of generations that the evolutionary algorithm is allowed
to run before terminating (regardless of how well the evolved covariance struc-
ture matches the pre-specified gmatrix).

pr_cross The probability that a focal network in the population will initiate a crossover
of a subset of its values with a randomly selected second network (note that any
given network might therefore be included in more than one crossover event in
a generation). The size of the subset is determined randomly.

sampleK During a round of selection, the number of random networks chosen to com-
pete in a tournament. A single generation will include as many tournaments as
necessary to create a new network population of size npsize.

chooseK During a round of selection tournament, the number of networks within the sam-
pleK random subset of the tournament that have the highest fitness will be se-
lected to populate the next generation of networks

term_cri The criteria for terminating the evolutionary algorithm. The algorithm will ter-
minate if a network is found in which the mean squared deviation of the covari-
ance matrix elements from gmatrix is less than exp(term_crit).

sd_ini The standard deviation of initialised network values at the start of the evolution-
ary algorithm. All network values are initialised by randomly sampling from a
normal distribution with a mean of 0 and a standard deviation of sd_ini

use_cor Should the gmatrix be treated as a correlation matrix rather than a covariance
matrix when calculating fitness?

prnt_out Should the function print out progress showing the stress for each generation

gmatrix The pre-specified trait covariance matrix. This will define what the covariance
will be between each trait when allele values are drawn from a standard normal
distribution.

Value

A list of eight elements that includes the following: (1) A vector of input parameters, (2) the pre-
specified covariance matrix, (3) matrix defining the effects of loci values on the first layer of the
network, (4) a three dimensional array link the first network layer to trait values, (5) a matrix of
the marginal effect of each locus on each trait, (6) the mined covariance structure, (7) all network
values to be inserted into individual genomes, and (8) the log stress of the mined matrix against the
pre-specified matrix.



4 run_farm_sim

Examples

gmt <- matrix(data = 0, nrow = 4, ncol = 4);
diag(gmt) <- 1;
mg <- mine_gmatrix(gmatrix = gmt, loci = 4, layers = 3, indivs = 100,

npsize = 100, max_gen = 2, prnt_out = FALSE);

run_farm_sim Initialise individuals and simulate farming

Description

Initialises a new set of individuals and then simulates farming over time. This is the main func-
tion that runs individual-based simulations of crop and pesticide use and the evolution of pesticide
resistance over time. To run this function, output from the mine_gmatrix function is required to
specify the covariance structure of individual traits and individual genomes. The arguments to this
function are used to initialise a landscape with the make_landscape function and initialise individ-
uals with the initialise_inds function. After initialisation, the simulation continues for up to a set
number of time steps (unless extinction occurs), and individuals on the landscape feed, encounter
pesticide, move, reproduce, and die depending upon the arguments specified in this function. After
a specified number of time steps, the crop or pesticide applied to a landscape cell can also change.
The end result is an evolving population of individuals that express traits that can potentially affect
fitness (e.g., food consumption, pesticide consumption, movement). Population level statistics are
calculated by default and printed to a CSV, but individual level data (which includes all individual
characteristics in a large table) need to be turned on because files can become extremely large (use
print_inds with extreme caution and print_last with care).

Usage

run_farm_sim(
mine_output,
N = 1000,
xdim = 100,
ydim = 100,
repro = "sexual",
neutral_loci = 1000,
max_age = 9,
min_age_move = 0,
max_age_move = 9,
min_age_reproduce = 0,
max_age_reproduce = 9,
min_age_feed = 0,
max_age_feed = 9,
food_consume = 0.25,
pesticide_consume = 0.1,
rand_age = FALSE,
move_distance = 1,
food_needed_surv = 0.25,



run_farm_sim 5

pesticide_tolerated_surv = 0.1,
food_needed_repr = 0,
pesticide_tolerated_repr = 0,
reproduction_type = "lambda",
mating_distance = 1,
lambda_value = 1,
movement_bouts = 1,
selfing = TRUE,
feed_while_moving = FALSE,
pesticide_while_moving = FALSE,
mortality_type = 0,
age_food_threshold = 0,
age_pesticide_threshold = 0,
farms = 4,
time_steps = 100,
mutation_pr = 0,
crossover_pr = 0,
mutation_type = 0,
net_mu_layers = 0,
net_mu_dir = 0,
mutation_direction = 0,
crop_init = "random",
crop_rotation_type = 2,
crop_rotation_time = 1,
pesticide_init = "random",
pesticide_rotation_type = 2,
pesticide_rotation_time = 1,
crop_per_cell = 1,
pesticide_per_cell = 1,
crop_sd = 0,
pesticide_sd = 0,
crop_min = 0,
crop_max = 1000,
pesticide_min = 0,
pesticide_max = 1000,
crop_number = 2,
pesticide_number = 1,
print_inds = FALSE,
print_gens = TRUE,
print_last = FALSE,
K_on_birth = 1e+06,
pesticide_start = 0,
immigration_rate = 0,
get_f_coef = FALSE,
get_stats = TRUE,
metabolism = 0,
baseline_metabolism = 0,
min_age_metabolism = 1,



6 run_farm_sim

max_age_metabolism = 9,
terrain = NA,
trait_means = NULL,
land_edge = "torus",
crop_growth = 0,
crop_growth_type = "none"

)

Arguments

mine_output The output from mine_gmatrix, which will be used to initialise the genomes and
traits of pests.

N The number of individuals that are initialised in a simulation. Individuals are
initialised in a random location on the landscape, and at least two individuals
are needed.

xdim The number of cells in the horizontal dimension of the landscape. This value
must be an integer greater than two.

ydim The number of cells in the vertical dimension of the landscape. This value must
be an integer greater than two.

repro The type of reproduction that individuals undergo in the simulation. There are
three options: (1) "asexual," in which individuals reproduce clonally and off-
spring have haploid genomes and traits identical to their mother with the poten-
tial for mutation; (2) "sexual," in which individuals are monoecious (both female
and male) and offspring have diploid genomes with alleles inherited from both
parents with mutation and recombination; (3) "biparental," in which individuals
are dioecious (only female or male) and offspring have diploid genomes with
alleles inherited from both parents with mutation and recombination.

neutral_loci The number of loci that are completely neutral (i.e., have no effect on fitness).
These loci can be used to monitor genetic drift or calculate inbreeding coeffi-
cients.

max_age This is the maximum number of time steps that an individual can survive. Indi-
viduals that are older than this age in a time step will always die.

min_age_move This is the minimum age at which an individual can move. Individuals below
this age will always remain on their current cell.

max_age_move This is the maximum age at which an individual can move. Individuals above
this age will always remain on their current cell.

min_age_reproduce

This is the minimum age at which an individual can be reproductively active.
No individuals below this age will engage in any reproductive activity, nor will
they be recognised as potential mates by other individuals.

max_age_reproduce

This is the maximum age at which an individual can be reproductively active.
No individuals above this age will engage in any reproductive activity, nor will
they be recognised as potential mates by other individuals.

min_age_feed This is the minimum age at which an individual can eat. No individuals below
this age will be able to consume food on the landscape.



run_farm_sim 7

max_age_feed This is the maximum age at which an individual can eat. No individuals above
this age will be able to consume food on the landscape.

food_consume This defines how much food an individual will consume from the cell on which
it is feeding. Food consumption can take on any positive real value, and an
individual will consume up to this amount if possible (if not, they will consume
however much food is left within their landscape cell).

pesticide_consume

This defines how much pesticide an individual will consume from the cell on
which it resides. Pesticide consumption can take on any positive real value,
and an individual will consume up to this amount if possible (if not, they will
consume however much pesticide has been placed on the landscape cell).

rand_age This argument determines whether individuals in the simulation will be ini-
tialised with a random age selected uniformly from zero to max_age. If FALSE,
then all individuals will be initialised at age zero.

move_distance This is the maximum number of cells that an individual can move, in any direc-
tion, on the landscape during one bout of movement.

food_needed_surv

This is the amount of food that an individual needs to consume to survive. If the
individual has not consumed this amount of food before the age of age_food_threshold,
then they will die in the time step.

pesticide_tolerated_surv

This is the amount of pesticide that an individual can tolerate and still survive.
If the individual has consumed more than this amount of pesticide on or after
the age of age_pesticide_threshold, then they will die in the time step.

food_needed_repr

This is the amount of food that an individual needs to produce one offspring.
The total number of offspring that an individual produces in a time step is the
floor value of their food consumption divided by this value.

pesticide_tolerated_repr

This is the amount of pesticide tolerated below which an individual can repro-
duce. Note that individuals above the threshold can still mate and sire offspring,

reproduction_type

This determines how individuals reproduce; the two options are "lambda" and
"food_based." If "lambda," then the number of offspring an individual produces
is sampled from a Poisson distribution with a fixed rate parameter lambda_value
(potentially adjusted by other factors in the simulation). If "food_based," then
the number of offspring produced is based on the amount of food consumed by
the individual.

mating_distance

This is the distance in cells (any direction) away from a focal individual from
which they can successfully find and identify a mate (e.g., if 0, then only indi-
viduals on the same cell are potential mates).

lambda_value This is the rate parameter for the Poisson sampling of offspring number; it only
applies when reproduction_type is set to "lambda."

movement_bouts This is the number of times an individual can move in a single time step (i.e.,
the number of cells that it can potentially visit). Each time an individual visits a
new cell, it can potentially feed or consume pesticide.



8 run_farm_sim

selfing This determines whether or not self-fertilisation is allowed when repro is set to
"sexual."

feed_while_moving

If TRUE, then individuals will feed in each movement bout when they arrive to
a new landscape cell.

pesticide_while_moving

If TRUE, then individuals will consume pesticide in each movement bout when
they arrive to a new landscape cell.

mortality_type This determines how mortality is enacted in the simulation. Currently there is
only one mortality type possible; mortality occurs if individuals exceed their
maximum age, do not consume enough food, or consume too much pesticide.

age_food_threshold

This is the age at which mortality associated with feeding is enacted, so an
individual younger than this age will not die if they have not yet consumed
sufficient food to satisfy food_needed_surv.

age_pesticide_threshold

This is the age at which mortality associated with pesticide consumption is en-
acted, so an individual younger than this age will not die even if they have ex-
ceeded their pesticide threshold.

farms This is the number of farms to be placed on the landscape. Farms are placed in
blocks of roughly equal sizes using a shortest splitline algorithm. Farms operate
independently in terms of what crops they grow and pesticides they apply.

time_steps This is the number of time steps that a simulation will run. Simulations will be
terminated before this number if extinction occurs.

mutation_pr This is the probability of mutation occurring at any locus of a newly produced
offspring.

crossover_pr This is the probability of crossover between two homologous loci. This only
applies for diploid genomes.

mutation_type This determines how mutation is modelled. If 0, then a completely new allele
value is drawn from a normal distribution with a mean of mutation_direction
and a standard deviation of 1 (or 1 / sqrt(2) for diploids, so that the expected
standard devation of the sum of both allele values is 1). If 1, then a new value
is drawn from a normal distribution with mean mutation_direction and standard
deviation of 1, and this new value is then added to the existing allele value.

net_mu_layers This is the proportion of the genome that can evolve. If 0, then only loci values
(green circles in Figure 1) can mutate. If 1, then loci and the first column of
arrows (green circles to first column of blue squares in Figure 1) can mutate.
If 2, then the first two columns of arrows in Figure 1 can mutate, and so forth.
Fewer mutation layers will constrain the covariance among traits, while more
mutation layers will allow the covariance structure to evolve more readily.

net_mu_dir The direction along the network in which net_mu_layers applies (not loci, green
circles in Figure 1, can always mutate). If 1, then net_mu_layers applies in the
direction from loci to traits. If 0, then the direction applies from traits to loci
(i.e., net_mu_dir = 0 and net_mu_layers = 1 would mean that only the arrow
values between the last hidden layer and traits in Figure 1 could mutate).



run_farm_sim 9

mutation_direction

This allows mutations to be biased in one direction. A default value of 0 makes
positive or negative allele values equally likely.

crop_init Initial crop type for each farm. This can be set in one of two ways. First,
the default value "random" will randomly assign each farm to an initial crop to
produce. Second, a vector can be used to specify the crop initialised on each
farm. The vector must be the same length as the number of farms, and the value
of each element ’i’ of the vector defines which crop is initialised for each farm
i. Hence, a crop_init vector must have as many elements as there are farms,
and vector elements must include natural numbers from 1 to the total number of
crops.

crop_rotation_type

This determines how crop types are rotated across the landscape. This can be
set in one of two ways. First, a natural number can specify a rotation type:
(1) crops will never rotate, (2) a new crop type will be randomly chosen every
crop_rotation_time time steps for each farm, or (3) farms will cycle through crop
types in order, with a change from one crop type to another every crop_rotation_time
time step. Second, a square matrix can specify the probability of transition from
a focal crop type (rows) to the next crop type (columns). Matrix rows must
therefore sum to 1. For example, an identity matrix (1s in the diagonal and 0s in
the off-diagonal) would specify crops that never rotate (i.e., crop i always rotates
to itself).

crop_rotation_time

This determines how many time steps a crop is left before being refreshed and
potentially changed. Note that even if the crop type does not change, this value
still has the effect of determining how often crops are replenished (if some have
been eaten since the last time they were replenished).

pesticide_init Initial pesticide type for each farm. This can be set in one of two ways. First, the
default value "random" will randomly assign each farm to an initial pesticide to
apply. Second, a vector can be used to specify the pesticide initialised on each
farm. The vector must be the same length as the number of farms, and the value
of each element ’i’ of the vector defines which pesticide is initialised for each
farm i. Hence, a pesticide_init vector must have as many elements as there are
farms, and vector elements must include natural numbers from 1 to the total
number of pesticides.

pesticide_rotation_type

This determines how pesticide types are rotated across the landscape. This can
be set in one of two ways. First, a natural number can specify a rotation type:
(1) pesticides will never rotate, (2) a new pesticide type will be randomly cho-
sen every pesticide_rotation_time time steps for each farm, or (3) farms will
cycle through pesticide types in order, with a change from one pesticide type
to another every pesticide_rotation_time time step. Second, a square matrix can
specify the probability of transition from a focal pesticide type (rows) to the next
pesticide type (columns). Matrix rows must therefore sum to 1. For example,
an identity matrix (1s in the diagonal and 0s in the off-diagonal) would specify
pesticides that never rotate (i.e., pesticide i always rotates to itself).

pesticide_rotation_time

This determines how many time steps a pesticide is left before being replenished



10 run_farm_sim

and potentially changed. Note that unlike crops, pesticide levels do not decrease
on the landscape over time (e.g., with consumption).

crop_per_cell This determines the expected amount of crop that is placed on a single landscape
cell. The more crop on a cell, the more that can be potentially consumed by
individuals.

pesticide_per_cell

This determines how much pesticide is placed on a single landscape cell. The
higher concentration of pesticide per cell, the more that individuals on the cell
will imbibe and potentially be affected by.

crop_sd This is the standard deviation of crop number placed on landscape cells. A
default value of 0 assumes that all cells have the same amount of crop.

pesticide_sd This is the standard deviation of pesticide applied to each landscape cell. A
default value of 0 assumes that each cell has the same concentration of pesticide
applied.

crop_min This is the minimum amount of crop that is possible to have on a single cell (i.e.,
crop values will never be initialised to be lower than this value).

crop_max This is the maximum amount of crop that is possible to have on a single cell
(i.e., crop values will never be initialised to be higher than this value).

pesticide_min This is the minimum concentration of pesticide that is possible to have on a
single cell (i.e., pesticide values will never be initialised to be lower than this
value).

pesticide_max This is the maximum concentration of pesticide that is possible to have on a
single cell (i.e., pesticide values will never be initialised to be higher than this
value).

crop_number This is the number of unique crops that can exist on the landscape during the
course of a simulation. The maximum number of possible crops is 10.

pesticide_number

This is the number of unique pesticides that can exist on the landscape during
the course of a simulation. The maximum number of possible pesticides is 10.

print_inds If TRUE, a CSV file will print in the working directory with every individual
and all of their characteristics (i.e., locations, traits, genomes) in every time step.
By default, this is set to FALSE and should only be set to TRUE with extreme
caution, as large populations persisting over long periods of time can produce
extremely large CSV files.

print_gens If TRUE, the time step and the population size will be printed to the R console
as the simulation is running.

print_last If TRUE, a CSV file will print in the working directory with every individual
and all of their characteristics (i.e., locations, traits, genomes) in only the last
time step. Note that for large populations, the file size generated can be very
large (10s to 100s of GBs).

K_on_birth This is a carrying capacity applied to new individuals across the entire land-
scape. If the total number of offspring in a time step exceeds this value, then
offspring are removed at random until the total number of new offspring equals
K_on_birth. In practice, this can help speed up simulations by avoiding the
unnecessary production of individuals when most will perish.



run_farm_sim 11

pesticide_start

This is the time step at which pesticide begins to be applied. No pesticide will
be applied prior to this start time, so individuals will not experience any effects
of pesticide. This can be useful as a tool to burn in the population prior to
introducing pesticide.

immigration_rate

This is the number of immigrant individuals arriving in the landscape in each
time step. Immigrants are initialised in random locations with the same network
structure (Figure 1) as individuals initialised at the start of the simulation, and
with allele values randomly drawn from a standard normal distribution.

get_f_coef This determines whether or not inbreeding coefficients will be calculated for
sexual populations and printed off in CSV files. Because this can add some
computation time, it is best to set to FALSE unless it is needed.

get_stats If TRUE, a CSV file will print in the working directory with summary statistics
for each time step. This is set to TRUE by default.

metabolism This determines the rate at which food consumed in previous time steps is lost
in subsequent time steps, which can be especially relevant if food consumed de-
termines survival or reproductive output. Values of 0 mean that stored gains will
always persist throughout an individual’s lifetime, while very high values will
model the gains of one time step being wiped out in subsequent time steps (if,
e.g., the objective is to model individuals needing to consume food successfully
in each time step to survive or reproduce, as opposed to having a feeding life
history stage followed by a mating and reproduction stage).

baseline_metabolism

This fixes a baseline metabolic rate at which food consumed in previous time
steps is lost in subsequent steps. This fixed value is always added to metabolism
for each individual. By default, this value is 0.

min_age_metabolism

This determines the minimum age at which losses of food consumed in previous
time steps enacted by metabolism and baseline_metabolism can occur.

max_age_metabolism

This determines the maximum age at which losses of food consumed in previous
time steps enacted by metabolism and baseline_metabolism can occur.

terrain Insert a custom terrain of different farms, which takes the form of a matrix that
includes a sequence of natural numbers in all matrix elements. For example, if
there are 4 farms, then all matrix elements must be 1, 2, 3, or 4. Beyond this
requirement, there is no restriction on where different farms are placed; the do
not even need to be contiguous on the landscape. Note that a custom terrain
will override the arguments farms, xdim, and ydim. For example, if the matrix
given to the terrain argument has 10 rows and 10 columns, then the simulation
will automatically set xdim and ydim equal to 10 without any warnings. Also
note that these terrain values do not necessarily need to be farms. Through
the use of a custom landscape and pesticide rotation option, these cells could
represent something like diversionary feeding sites or even buildings or rivers.
See vignettes and other documentation for details.

trait_means This provides the mean values of the evolving pest traits in the initialised pest
population, which by default are zero. To change mean trait values in the



12 run_farm_sim

initialised population, the trait_means argument requires a vector of the same
length as the number of evolving pest traits defined within the function (i.e., if
there are two evolving traits in the simulation, "T1" and "T2", then trait_means
should be a vector of length 2). Note that mean trait values may change as the
population evolves, so the values in this vector define only the means of the
initial population.

land_edge This sets what happens at the edge of the landscape. Three options are possible,
including "torus", "leaky", and "reflect". A torus results in no edge, such that
pests that leave one side of the landscape end up on the other side. A leaky
edge causes pests to leave the landscape and the simulation entirely, so they are
effectively no longer recorded. A reflective edge causes pests to bounce at the
edge back in the direction from which they came. The default and recommended
edge is a torus.

crop_growth This sets the amount by which landscape cell values increase for each crop from
one time step to the next. This might be used to model the increase in biomass
caused by plant growth on the landscape cell. The way in which growth is
enacted is set by crop_growth_type. Values for crop_growth can either be a
single number (in which case, the growth amount applies to all crop types) or a
vector of the same length as crop_types (in which case, vector indices give the
amount of growth for each crop number).

crop_growth_type

This clarifies whether crop growth should be "none" (default), "geometric", or
"linear". If geometric, then the value of a landscape cell increases to cell_value
* (1 + crop_growth). If linear, then a fixed value crop_growth is added to the
existing cell value. Note that for linear growth, this fixed value is only added
if the existing cell value is greater than zero (else it is assumed that there is no
crop to grow).

Value

The output in the R console is a list with two elements; the first element is a vector of parameter
values used by the model, and the second element is the landscape in the simulation. The most
relevant output will be produced as CSV files within the working directory. When get_stats =
TRUE, a file named ’population_data.csv’ is produced in the working directory. When print_last =
TRUE, a complete array of all individuals and their characteristics is printed for the last time step
in the working directory in a file named ’last_time_step.csv’ (for large simulations, this file can be
> 1GB in size). When print_inds = TRUE, a complete array of all individuals in all time steps is
produced in the working directory in a file named ’individuals.csv’ (use this option with extreme
caution for all but the smallest simulations).

Examples

gmt <- matrix(data = 0, nrow = 4, ncol = 4);
diag(gmt) <- 1;
mg <- mine_gmatrix(gmatrix = gmt, loci = 4, layers = 3, indivs = 100,

npsize = 100, max_gen = 2, prnt_out = FALSE);
sim <- run_farm_sim(mine_output = mg, N = 100, xdim = 40, ydim = 40,

repro = "asexual", time_steps = 1,
print_inds = FALSE, print_gens = FALSE,



stress_test 13

print_last = FALSE, get_stats = FALSE);

stress_test Mine_gmatrix output stress

Description

Run a diagnoistic test on the stress output of mine_gmatrix. The mine_gmatrix function produces a
network from loci to traits for a pre-specified trait covariance structure. This covariance structure is
estimated from network values, but can vary due to error in the loci values (standard random normal
numbers). This function will test the stress of a network (mean deviation between the estimated
covariance matrix and the pre-specified one) a given number of times to produce a distribution of
stress estimates.

Usage

stress_test(mine_output, indivs = 1000, reps = 10)

Arguments

mine_output The output from mine_gmatrix, which will be used to initialise the genomes and
traits of pests.

indivs The number of individuals to use in the stress test. Higher values produce a
larger sample size for more accurate estimates of the true covariance structure
produced by the network, and therefore the actual stress expected from it.

reps The number of times a new set of individuals will be initialised for estimating
the covariance between traits and calculating its stress.

Value

A vector of stress values the same length as ’reps’.

Examples

gmt <- matrix(data = 0, nrow = 4, ncol = 4);
diag(gmt) <- 1;
mg <- mine_gmatrix(gmatrix = gmt, loci = 4, layers = 3, indivs = 100,

npsize = 100, max_gen = 2, prnt_out = FALSE);
stresses <- stress_test(mine_output = mg);



Index

mine_gmatrix, 2

run_farm_sim, 4

stress_test, 13

14


	mine_gmatrix
	run_farm_sim
	stress_test
	Index

